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Abstract: An open source software package dedicated to processing stored electron backscatter patterns is
presented. The package gives users full control over the type and order of operations that are performed on
electron backscatter diffraction (EBSD) patterns as well as the results obtained. The current version of
EBSD-Image (www.ebsd-image.org) offers a flexible and structured interface to calculate various quality metrics
over large datasets. It includes unique features such as practical file formats for storing diffraction patterns and
analysis results, stitching of mappings with automatic reorganization of their diffraction patterns, and routines
for processing data on a distributed computer grid. Implementations of the algorithms used in the software are
described and benchmarked using simulated diffraction patterns. Using those simulated EBSD patterns, the
detection of Kikuchi bands in EBSD-Image was found to be comparable to commercially available EBSD
systems. In addition, 24 quality metrics were evaluated based on the ability to assess the level of deformation in
two samples (copper and iron) deformed using 220 grit SiC grinding paper. Fourteen metrics were able to

properly measure the deformation gradient of the samples.
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INTRODUCTION

Several third-party software programs exist for post-
processing electron backscatter diffraction (EBSD) map-
pings using the different output files of commercial software:
VMAP (Humphreys, 2004), MTEX (Hielscher & Schaeben,
2008), and open-ebsd (http://code.google.com/p/open-
ebsd). To our knowledge, no freely available software is
available for processing electron backscatter diffraction pat-
terns (EBSP). As such, an open-source, cross-platform EBSD
software, entitled EBSD-Image, was developed to offer a
flexible and expandable interface, allowing the implementa-
tion of any algorithm related to the analysis of stored
diffraction patterns (e.g., quality metrics). The software was
developed to serve as a research and developmental tool for
the EBSD community. Its main objective is to give a high
level of flexibility to the user instead of targeting a high
processing speed.

The primary use of EBSPs is to perform phase identifi-
cation and orientation measurements. In these applications,
the angles between Kikuchi bands and, on some occasions,
the width of the bands are used (Wright, 1992; Krieger
Lassen, 1994). It is also possible to extract a large amount of
information from a diffraction pattern by looking at the
variation in its “quality”. From an EBSD point of view,
“quality” is a parameter that quantifies the crystallographic
uniformity within the interaction volume. Different features
of a diffraction pattern may be used to assess its quality:
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intensity, contrast, sharpness, noise level, etc.—quality met-
rics can be designed to highlight these features for each
diffraction pattern in a mapping.

Quality metrics have been used for different applica-
tions: to discriminate between crystallographically similar
phases, e.g., ferrite and martensite (Wu et al., 2005; Ryde,
2006; Petrov et al., 2007); to estimate the accuracy of the
orientation measurements; and to establish a better clean-up
procedure (Hovington et al., 2009). This work focuses on
evaluating how well quality metrics are able to assess the
level of deformation inside a sample. When a crystal lattice
is plastically deformed, the dimensions of its lattice are
distorted: this nonuniformity leads to a greater distribution
of the diffraction angles. The deformation is manifested by
a decrease in sharpness of the edges of the Kikuchi bands
(Wilkinson & Dingley, 1991; Keller et al., 2004). Wright and
Nowell (2006) have shown that the image quality metric, as
calculated by the TSL OIM software (AMETEK, Inc., Ber-
wyn, PA, USA), can be used to evaluate deformation.

Quality metrics found in the literature as well as new
ones devised by the authors were evaluated using EBSD-
Image: this was done by measuring the depth of the defor-
mation induced by grinding copper and iron samples with
220 grit SiC paper. The compression loading and raking
action of the SiC particles create a deformation gradient
starting from the surface of the sample inward. Prior to this
evaluation, a description of EBSD-Image will be given,
highlighting the structure of the software, the implementa-
tion of its strategic algorithms, its file formats, and the tools
developed to analyze large datasets. Finally, simulated dif-
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Figure 1. Structure of the analysis engine.

fraction patterns based on kinematic theory were used as a
benchmark for the algorithms implemented in the software
to better understand the results obtained using the tested
quality metrics.

DESCRIPTION OF THE SOFTWARE

Platform

Many of the algorithms involved in processing EBSPs as well
as the post-treatment and analysis of EBSD mappings are
directly derived from image analysis routines. This includes
standard operations such as erosion, dilation, convolution,
thresholding, etc., and more advanced ones such as the
Hough and Fourier transform. It is for this reason that EBSD-
Image is built on top of the image analysis software, RML-
Image (www.rmlimage.com): the users have access to image
analysis algorithms to analyze their results and extract addi-
tional information. This contrasts with other EBSD soft-
ware, which are more focused on EBSD specific operations.

Structure

For each diffraction pattern in an EBSD mapping, process-
ing consists of performing a series of operations on that
EBSP and extracting some result. The difference with EBSD-
Image lies in the flexibility given to the user, who can
choose which operations to perform and which results to
extract. An operation is defined as any process of taking one
or more inputs and returning one or more outputs. The
engine has a specific structure, organizing operations into
five distinct steps (Fig. 1). Examples of algorithms within
these steps will be discussed in the next section.

Logically, the first step of an operation is to load into
memory the diffraction pattern as an 8-bit grayscale image.
It also involves enhancement algorithms to improve the
quality and reduce the noise in the pattern (e.g., median
filter), as well as the selection of a region of interest in the
pattern to ignore noisy edges. The second step is related to
the Hough transform, which transforms the pattern’s image
space into the Hough space. Kikuchi bands inside the pat-
tern are visible as peaks in the Hough space and are more
easily detected by a computer algorithm (Krieger Lassen,
1994). Different implementations of the Hough transform
can be chosen or a new algorithm can be written. Third, the

peaks in the Hough image must be located. Enhancement
algorithms, such as a butterfly mask, can be used to facili-
tate peak detection (Krieger Lassen, 1994). Ultimately, a
thresholding operation is performed to create a binary map
where pixels may only have values of 0 and 1. In the binary
map, the position (6, p) and intensity of each peak can be
measured. This fourth step is the “peak positioning” step.
Any operation to clear unwanted peaks or to look for
specific peaks may be performed as part of this step. The
most intense peaks are found and used to evaluate the
diffraction quality of a pattern.

Peak detection and peak positioning are separate be-
cause they are independent tasks with different objectives.
Detection aims to find as many peaks as possible in the
Hough space without detecting false peaks, whereas position-
ing precisely locates the center of each detected peak. The
separation of these steps also allows intermediate opera-
tions to be performed.

The structure includes a fifth step to index EBSPs based
on the identified peaks, but no algorithm is currently fully
implemented. However, the tools included in EBSD-Image
facilitate the implementation of such algorithms. For in-
stance, phases can be defined manually in the graphical
interface by specifying their space groups and atom posi-
tions, or by importing this information from a crystallo-
graphic information file. Routines to calculate reflectors
(diffracting crystallographic planes) based on atomic scatter-
ing factors are available.

Furthermore, different mathematical representations of
rotation in three-dimensional space (matrix, quaternion,
Euler angles, axis angles) are implemented to perform oper-
ations on the orientation found by the indexing algorithm
(e.g., to eliminate symmetrically equivalent orientations).
Algorithms linking peak positions to reflectors of a given
phase, such as the ones invented by Krieger Lassen (1994)
and Wright (1992), could therefore be one collaborative
project of the EBSD community resulting from this work.

It is important to note that the source code of EBSD-
Image is structured, extensible, and documented so users
can easily incorporate custom algorithms. We refer the
reader to the developer’s manual (www.ebsd-image.org) to
obtain a complete guide of how to implement new algo-
rithms. The manual gives additional detail of the analysis
engine’s structure and programming conventions.

EBSD-Image offers a simple but powerful graphical
interface. A wizard (Fig. 2) guides the user through the
set-up of all parameters and operations. The parameters
(accelerating voltage, size of the mapping to analyze, calibra-
tion, etc.) are defined in the first few panels. The next panels
are to set-up the operations, one panel per main step. Each
panel has the same appearance: with available operations
listed on the right and selected operations on the left.
Operations developed by the user automatically appear in
the available operations’ list. The last step of the wizard is to
decide how the experiment will be run. The preview mode
allows the user to check that all operations have been
performed correctly on one diffraction pattern. Another
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Figure 2. Screenshot of the wizard to select the operations of an
experiment of EBSD-Image.

output option is to save the experiment parameters and
operations to a file and relaunch the experiment at a later
time. The last option runs the experiment directly on the
desktop; the user can visually track the progress by selecting
one of the result images.

Implementation

The implementation of the Hough transform follows the
one described by Krieger Lassen (1994). To prevent biasing
effects as reported by Tao and Eades (2005), the intensity at
each coordinate 6 and p in the Hough space is equal to the
average (instead of the sum as originally described by Krieger
Lassen) intensity of all the sinusoidal functions passing
through this coordinate. The intensity of a coordinate in the
Hough space is therefore the average intensity of the pixels
along its corresponding line in the image space. To be
represented as an image, the Hough space is quantized by
two resolutions: Af and Ap. The choice of each resolution
determines the computation time of the Hough transform,
the dimensions of the Hough space image, and conse-
quently the dimensions of the Hough peaks.

A common pattern recognition method used to in-
crease the contrast of the peaks with respect to the back-
ground is to perform a convolution between a mask (e.g.,
“butterfly mask”) that matches the shape of the peaks in the
Hough space. To obtain a good match, the mask must have
the same shape and size as the peaks. As demonstrated by
Krieger Lassen (1994), both vary based on the width of a
Kikuchi band and position of its peak in Hough space as
well as the selected resolutions. Assuming a square convolu-
tion mask, A@ and Ap should be selected to obtain peaks
with an aspect ratio close to unity for typical widths of
Kikuchi bands and for a large portion of the Hough space.
We found it intuitive to ask the user to specify the Af and
calculate the resultant Ap, as the execution time is propor-
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Figure 3. Example of (a) a simulated diffraction pattern and (b)
the resultant Hough space used to calculate the influence of the
Hough peaks’ position on their aspect ratio.

tional to the former. Furthermore, the size of the mask
should match the size of the peaks based on the selected
resolutions.

To analyze the influence of peak position in the Hough
space on the aspect ratio, simulated diffraction patterns
(rectangular patterns, 672 X 512 pixels) containing only one
Kikuchi band (width b of 40 pixels) were used (Fig. 3a). The
slopes and positions of the simulated Kikuchi bands cov-
ered the whole Hough space. The Hough transform was
performed using a Af resolution of 1°/pixel and a Ap
resolution of 1 pixel/pixel (Fig. 3b). Finally, the single peak
in Hough space was thresholded and its dimensions were
used to calculate the aspect ratio (height h/width w). To
visualize the variation in aspect ratio, values were color-
coded and plotted as a function of the peak position in the
Hough space (Fig. 4a). In Figure 4b, using the same color
scale, the analysis was repeated using a circular pattern
(radius R of 256 pixel) for the region of interest. The aspect
ratio using a circular mask (Fig. 4b) has a much more
uniform distribution as a function of # than the one calcu-
lated without a mask (Fig. 4a). The comparison of these two
figures illustrates the importance of selecting a circular
region of interest from rectangular patterns to eliminate the
variation of aspect ratio as a function of #. This variation
can be explained by the different possible band lengths in
the diffraction pattern. Oblique bands crossing the center of
a rectangular diffraction pattern are longer than horizontal
or vertical bands crossing the center or those near the edges.
This effect is removed by using a circular pattern: the
maximum length of the bands is determined by the diam-
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Figure 4. Variation of the aspect ratio for the peaks in Hough
space (a) for a rectangular diffraction pattern (672 X 512 pixels)
and (b) for a circular diffraction pattern (radius of 256 pixels). The
color bar represents the normalized variation of the aspect ratio
for both cases.

eter of the pattern. The variation as a function of p is due to
a decrease in the length of the bands as they are located
further away from the center of the pattern. These results
highlight the importance of the circular mask.

Krieger Lassen (1994) derived two equations to express
the height and width of peaks in Hough space for circular
diffraction patterns. For an aspect ratio of unity, the relation-
ship between A# and Ap can be written as

b

2arctan| —————

(WRZ —-p? )
where b is the width of a Kikuchi band, R is the radius of
the circular pattern, and p is the coordinate of the peak in
Hough space (Fig. 3). The latter is bounded between —R
and R. Given the position of the EBSD camera with respect
to the sample (pattern center and detector distance), the
accelerating voltage, and the phases present in the sample,
the theoretic range of b can be determined. For example,
the width of the 10 most intense Kikuchi bands of a pure
copper sample varies between 16 and 67 pixel (calculated
from 100 random orientations at 20 keV with a diffraction
pattern of 672 X 512 pixels). With these boundaries, an
approximation of the proportionality constant between Af
and Ap can be calculated by numerically integrating equa-
tion (1) between the width (b, = 16 pixels to b, = 67 pixels)
and p (py = —256 pixels to p; = 256 pixels) ranges:

1
Ap =
2(P1 - Po)(bl - bo)
by (p b
X b dbdp |A6.
2arctan| —/———
by Po 2 VRZ - p2 )

)

Equation (2) ensures that the aspect ratio will be close to

unity for a large portion of the Hough space, independent

of the selected A6 resolution and dimensions of the diffrac-
tion patterns.

As stipulated by Krieger Lassen (1994), the height of a

peak (h) is directly proportional to the width of its Kikuchi
band (b).
b

Ap’
The size of the convolution mask therefore can be selected
based on the average theoretical width of the Kikuchi bands,
as calculated to solve the integral. In the case of the copper
sample, the average width of the bands is 30.5 pixels and,
for a A of 1°/pixels, the calculated Ap from the integral is
3.76 pixels/pixels, giving a peak height of 8 pixels. A convo-
lution mask of 9 X 9 pixels would be appropriate.

To detect peaks in the Hough space, two algorithms are
currently implemented in EBSD-Image. The first is an adap-
tation of the top hat algorithm presented by Gonzalez and
Woods (2007). The average value between the min error
(Kittler & Illingworth, 1986) and entropy (Kapur et al,
1985) thresholding methods is used after the top hat to
create the binary image. The second peak detection algo-
rithm uses the statistical distribution of the Hough space to
threshold peaks from the background. It utilizes the fact
that peaks have an intensity greater than the average inten-
sity by some multiple of the standard deviation, as defined
by the user.

h 3)



Three peak positioning methods are currently available
in EBSD-Image: centroid, center of mass, and maximum
position. From the binary image of detected peaks, the first
method finds the geometric centroid of each peak and takes
this value as the position of the peak. The second method
was proposed by Krieger Lassen (1998): the center of mass
is calculated using the intensity of the pixels. Finally, the
third method finds the position of the pixel with the maxi-
mum value inside a given peak. For each of these methods,
the intensity of a peak is taken as the value of the closest
pixel to its position.

File Formats

EBSD-Image introduces two file formats to facilitate the
manipulation of large numbers of diffraction patterns and
processing of the resulting maps. Far from being propri-
etary to EBSD-Image, they are designed to be simple and
easily implementable by other software.

In commercial software, diffraction patterns are saved
as individual files.* Even with 50,000+ images, the space
required to save all EBSPs is no longer a problem with
current hard drives. However, the number of files stored
inside a single folder is a challenge for the operating system.
Browsing a folder containing this amount of files is slow
and inefficient. This problem becomes apparent when one
attempts to move or copy those folders. On an Intel Xeon
3 GHz computer (3 GB of RAM, 7,200 rpm SATA hard
drive) with the Microsoft Windows XP operating system, it
takes 1 min to browse a folder containing 50,298 images.
The transfer of these files to a portable magnetic hard drive
via a USB 2.0 connection takes just over 18 min. To remedy
to this situation, we propose a simple file format to store
and access all EBSPs: the stream maps or SMP file. Thou-
sands of small image files are replaced by a single, large
SMP file. Images are saved in sequence from the upper left
corner of a map down to the lower right corner. On the
same computer described above, the inclusion of 50,298
images into a SMP file takes approximately 2 min and 30 s.
The real advantage comes when transferring the SMP file to
another media format: it took 1 min to copy the SMP file to
the same portable hard drive.

To have a more open and flexible file format, EBSD-
Image uses a different scheme to store its results. All results
from an experiment can be saved in maps/images: one map
to identify the location of each phase, one map for each of
the three Euler angles, one map per quality metric, etc.
These different images are stored inside a ZIP file with a
specific structure dubbed EBSD multimap (short for multi-
ple map). There are no restrictions on the type or number
of maps in a multimap. Apart from the images, the ZIP file
contains an XML file to store metadata (parameters and
properties) related to an EBSD acquisition.

*The common file formats are JPG, BMP, or TIFE. However, the possibility
of saving diffraction patterns as images during an acquisition is not
available in all EBSD software.

An Open-Source Engine for EBSP 5

Processing of Large Dataset

With the advent of faster EBSD cameras, the size and/or the
quantity of EBSD acquisitions and consequently the num-
ber of diffraction patterns acquired will only increase in
coming vears (Brough & Humphreys, 2010; Schwarzer &
Hjelen, 2010). EBSD-Image has been developed with the
capability to process and analyze large datasets. Three utili-
ties are currently available: (1) the aforementioned SMP file,
(2) the stitching of mappings and combination of corre-
sponding diffraction patterns, and (3) the use of a distrib-
uted computing grid.

One common strategy used to cover a large area of a
sample is to acquire several mappings and later stitch them
into one single mapping. In the case of an EBSD dataset,
stitching involves the combination of the information con-
tained in each mapping (orientation, quality metrics, etc.)
as well as the diffraction patterns. Commercial software
provides tools to stitch different mappings together, but the
relation between the pixel positions and the EBSP image
files is lost. Hence, a routine was written in EBSD-Image to
simultaneously combine different EBSD multimaps and
SMP files. Those maps can then be reprocessed.

The EBSD analysis requires computer-intensive calcula-
tions, such as the Hough transform, to be performed on
tens of thousands of images. If one wants to use more
elaborate but perhaps slower algorithms to analyze these
diffraction patterns, processing large quantities of data can
easily become a problem, or at the very least a limitation.
Since each diffraction pattern is completely independent
from the others, the same set of algorithms can be indepen-
dently applied on each one and the results combined at the
end. New commercial software with “fast” cameras use
multiple processors during the acquisition. The distributed
interface of EBSD-Image offers the same capability but on
more than one computer, and it is detached from the
graphical interface. There is no limitation on how many
processors can be used. This allows the use of distributed
computing on a grid or cluster of computers.

MATERIALS AND METHODS

Sample Preparation

This study evaluates the deformation behavior of two pure
metals: copper and iron, which have different crystal struc-
tures and slip systems. As specified by the supplier, their
purity is at least 99.99%. We selected samples with large
grains to minimize the effects of grain boundaries. The
samples were deformed by 220 grit SiC grinding paper. This
design of experiment is similar to that of Samuels (2003),
who used light optical and transmission electron micros-
copy to study the deformation of several grinding media.
The samples had to be carefully prepared to prevent
further deformation. From the stock block, two samples of
each metal were cut out using the proper abrasive cutting
wheel and sectioned as small cubes. Having right angles
between the faces of the sample was important for the later
steps. One sample was deformed using the grinding paper
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while the other was used as a control. The samples were
mounted in Bakelite and polished up to colloidal silica to
remove any deformation induced during sectioning. The
deformed samples were ground for 1.5 min on 220 grit SiC
grinding paper with a force of 20 N and polishing disk
rotation speed of 300 rpm in the complementary direction
with respect to the polishing head. All samples were then
unmounted from the Bakelite. The deformed surface was
nickel plated (3-5 um thick layer) to protect it from sub-
sequent operations of the preparation procedure. The sam-
ples were then mounted sideways in Bakelite: in other
words, the deformed surface was now perpendicular to the
polishing surface of the mount. The samples were polished
up to colloidal silica. All steps were performed on auto-
mated polishing equipment to eliminate any human inter-
vention. No chemical attack or electro-polishing techniques
were used.

Acquisition Parameters

Diffraction patterns were acquired using a Hitachi S-4700
(cold field emitter) microscope equipped with a NordlysS
and the HKL Channel 5 software (Oxford Instruments plc,
Tubney Woods, Abingdon, Oxfordshire, UK). An accelerat-
ing voltage of 20 keV, binning of 8 X 8 (168 X 128 pixels),
and 10 ms dwell time were used for the mappings. Diffrac-
tion patterns were saved without any compression. The
samples were aligned to position the deformed surface
perpendicular to the tilt axis to ensure the best resolution
along the deformation profile. Diffraction patterns were
processed on the computing cluster of the Hydro-Québec
Research Institute (AMD Opteron 2218 processors, Linux
Centos 4.4 operating system, and Sun Grid Engine nodes
management system).

Calculation of Quality Metrics

One of the first applications of EBSD-Image was to deter-
mine which quality metrics are suitable to detect variation
in deformation level. Several quality metrics are described
in the literature; some of these were successfully used to
study deformed samples, while others did not give any
deformation information. Based on the concepts used in
the elaboration of these quality metrics, new ones have been
defined and measured using EBSD-Image. The flexible struc-
ture of EBSD-Image facilitates the implementation and
evaluation of any quality metric.

We used a systematic approach to define new quality
metrics. The quality of a diffraction pattern can be directly
estimated from the pattern itself or calculated from the
intensity of the peaks in Hough space. From an implemen-
tation point of view, these two categories use different
information to calculate quality metrics; one is based on the
diffraction pattern and the other on the detected peaks and
their intensities. The intermediate step between these two
types of information is the Hough transform. Logically, the
result of the Hough transform could provide a useful eval-
uation of the diffraction quality. Different mathematical
and statistical operations can be performed on these sources

Table 1. Summary of the Quality Metrics That Will Be Studied
Based on Their Ability to Assess the Level of Deformation.

Pattern Hough Detected Peaks
Average ? ? ?
Standard ? ? ?

deviation

Entropy ? ? N/A
Range ? ? ?
Sum ? ? ?
Count N/A N/A ?
Others Fourier transform — Band contrast

Signal-to-noise Band slope
Pattern quality

Local difference

of information to obtain a value expressing the diffraction
quality. For instance, Tao (2003) used the average, standard
deviation and Shannon’s entropy of the diffraction patterns.
Other simple operations are the range (the difference be-
tween the maximum and the minimum value of a dataset),
the sum (the addition of all the values of a dataset), or the
number of items in the dataset.

By combining the three sources of information (diffrac-
tion pattern, Hough space, and detected peaks) with these
operations, we obtain a table of 18 possible quality metrics
(Table 1). Taking the average operation as an example, a
quality metric can be calculated from the mean of the pixels
in the diffraction pattern, the pixels of the Hough space, or
the intensities of the detected peaks. Three quality metrics,
however, can be removed from the list: the operation evalu-
ating the number of items in the data does not apply to the
diffraction pattern and Hough space because the number of
items, i.e., the number of pixels, is constant. It is only valid
for the detected peaks. Also, the entropy operation is not
applicable to the intensities of the detected peaks as they do
not constitute a probabilistic distribution.

Apart from these 15, three additional quality metrics
found in the literature were implemented: one based on the
Fourier transform proposed by Krieger Lassen (1994), the
signal-to-noise ratio calculated using the cross correlation
between odd and even rows of a given image (Frank &
Al-Ali, 1975), and the pattern quality reportedly used by the
INCA Crystal system (Oxford Instruments plc). We also
introduced four other quality metrics, grouped under “local
difference” in Table 1. They are based on the difference
between the maximum and minimum value inside each
detected peak, i.e., the range operation is applied on every
detected peak.

Removal of Artifacts

As mentioned by Wu et al. (2005), grain boundaries and
surface defects are regions in a mapping where diffraction
patterns have a lower quality. To eliminate the effect of these
elements on the calculation of deformation depth, they are
excluded using a mask. Surface defects such as scratches and
debris are easily identifiable and can be manually removed.



Figure 5. Schematic representation of the slices used to calculate
the deformation profile. The solid line represents the interface
between the copper sample and the nickel plating. The dashed
lines delineate the slices.

As for grain boundaries, a two-pixels-wide region along
each grain boundary is added to the mask. The detection of
grain boundaries was performed with the HKL Channel 5
software using a 5° misorientation criteria. This informa-
tion was then processed using EBSD-Image to create the
two-pixels-wide region.

Deformation Depth

For all samples in this study, the level of deformation
should be at its maximum near the deformed surface. The
values in the quality maps are expected to increase as a
function of the distance from the deformed surface up to
the undeformed region. This variation should increase
monotonically as the samples were uniformly deformed.

To obtain such a profile, the following steps were per-
formed on each map of the different samples. The first step
is to precisely determine the coordinates of the deformed
surface. Because of the electroplated layer of nickel, the latter
does not correspond to the edge of the sample. A zigzag line
made of several points is used to delineate the surface. The
second step is to segment the map into successive vertical
slices starting from the deformed surface. All of the slices
have the same thickness and therefore the same number of
pixels. Figure 5 schematically shows five slices of a given
map. The solid line from the left corresponds to the de-
formed surface. In reality, about twenty-five 10-pixels-wide
vertical slices are taken per map. The final step is to calculate
the mean value of the pixels inside each slice. This value is
plotted as a function of the distance of the slice from the
deformed surface. The greater the number of pixels in a
slice, the better the statistics of the profile. The deformation
depth can be defined as the distance from the deformed
surface, where the quality reaches 90% of the plateau. In
other words, the depth extends from the deformed surface
up to a region with a deformation level of 10%.

By comparing different deformation profiles, the qual-
ity metrics can be evaluated based on their ability to assess
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the level of deformation. This study did not look at the
influence of experimental conditions on the quality metrics.
Furthermore, the same Hough transform resolution (1°/
pixel) as well as the same algorithms for peak detection
(standard deviation after applying a 9 X 9 butterfly mask)
and peak positioning (center of mass) were used for each
quality metric. It is certainly possible that the algorithms
used could influence the results obtained from the quality
metrics. Our comparison is therefore qualitative and closely
linked with one of the scopes of this application: to measure
deformation depth induced during grinding.

RESULTS AND DiscussioN

Benchmarking

Simulated diffraction patterns were used to benchmark the
peak detection and positioning algorithms implemented in
EBSD-Image. Simulations were generated using the kine-
matic diffraction model for a given set of experimental
conditions (accelerating voltage, calibration of the camera,
crystalline structure, and orientation). Benchmarking there-
fore can be used to compare the theoretical positions of the
most intense Kikuchi bands with those measured after
different peak detection or positioning algorithms. Other
advantages of using simulated diffraction patterns are that
they are free of any lattice distortion, independent of acqui-
sition parameters (integration time, gain, background cor-
rection, etc.), and allow a large range of orientations to be
explored. To test the ability of the detection and positioning
algorithms to deal with high and low quality diffraction
patterns, noise and smoothing filters were independently
applied on each diffraction pattern. More precisely, the
noise level in the pattern was calculated from the equation
used by Cizmar et al. (2008) on simulated scanning electron
microscope (SEM) images. It consists of the combination of
Poisson noise, representing the noise from the electron
interactions statistics, and Gaussian noise, attributed to the
camera’s electronics:

C,=C, +(c+P\C)Z, (4)

where C, is the original intensity of a pixel, C, the final
intensity, o the standard deviation of Gaussian noise, P the
amplitude of Poisson noise, and Z a random number nor-
mally distributed. The electronics noise is constant for a
given EBSD system and set of experimental conditions: we
assume a standard deviation of 25 for the Gaussian noise.
The amplitude of the Poisson noise was varied between 0
and 64 to simulate an increase in the noise level. The
smoothing filter replaces the intensity of a pixel by the
average intensity of its neighbors. It has the effect of blur-
ring the Kikuchi bands. As the number neighbors used in
the calculations is increased, the smoothing and blurring of
the image are also increased. For this study, the smoothing
level was increased up to a kernel of 31 X 31.

In the following results, the same set of 10 randomly
oriented diffraction patterns was used. They were calculated
for a copper crystal observed at 20 keV. The use of different
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e}

(dy

Figure 6. Examples of simulated diffraction patterns for a copper crystal at 20 keV after (a,b) a noise filter and (c,d) a
smoothing filter were applied. The standard deviation for the Gaussian noise is constant at 25 in (a,b) whereas the
amplitude of the Poisson noise is (a) 8 and (b) 24. The kernel size of the smoothing filter is (c) 15 X 15 and (d) 23 X 23.
The same crystal orientation is shown in all four diffraction patterns.

orientations is important as the reflectors change from one
diffraction pattern to another. Figure 6 shows an example of
four simulated diffraction patterns.

A good peak detection algorithm should be able to
detect as many peaks as possible in the Hough transform,
without reporting peaks that do not correspond to a Kiku-
chi band (false positive). The benchmarking of two peak
detection algorithms in EBSD-Image (top hat and standard
deviation) as well as the detection obtained using two
commercial EBSD software programs (A & B) was done by
evaluating the detection of the 10 most intense peaks in
Hough space. We arbitrarily defined a peak to be correctly
detected if it is located within a 5 pixel radius of the
theoretical position of its Kikuchi band.” For the peak
detection algorithms in EBSD-Image and software A, a A
resolution of 1°/pixel was used for the Hough transform

bWith the resolution used, it is equivalent to a 5° difference in the 6
direction and 9 pixel difference in the p direction of the Hough space.

and a 9 X 9 butterfly mask was applied. The positions of the
peaks were directly exported. For software B, a Hough
resolution of 60 (suggested for accurate detection in the
user manual) and the “band centers” detection method were
selected. The positions of the peaks were back-calculated
from the “band detection” image. Figure 7 shows the num-
ber of correctly detected bands for the four algorithms as a
function of (a) the amplitude of the Poisson noise and (b)
the kernel size of the smoothing filter. The value of each
point corresponds to the average of the 10 randomly ori-
ented diffraction patterns, whereas the error bars are the
95% confidence interval.

Benchmarking shows that the two algorithms proposed
in EBSD-Image are comparable to the ones used in commer-
cial software. All algorithms follow the same trend as the
level of deterioration of the diffraction patterns is increased.
With the selected experimental parameters, software A does
not perform as well on noisy diffraction patterns. The top
hat algorithm has more difficulty in detecting the peaks.
Further investigation revealed that the butterfly mask may
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Figure 7. Number of correctly detected bands by different peak
detection algorithms as a function of (a) the amplitude of the
Poisson noise and (b) the kernel size of the smoothing filter.

have an adverse effect on this algorithm. If no butterfly
mask is applied on the Hough space, the top hat algorithm
correctly detected as many peaks as the standard deviation
algorithm.

Benchmarking of peak positioning was performed in a
similar manner on the three aforementioned algorithms of
EBSD-Image (centroid, center of mass, and maximum posi-
tion). The comparison could not be made with commercial
software due to the loss of precision in the conversion of
data. The accuracy of the identification procedure was eval-
uated based on the distance in 6 and p between the theoreti-
cal and identified position of the peaks. The results are shown
in Figure 8 as a function of the kernel size of the smoothing
filter. Overall the three identification algorithms give a simi-
lar accuracy on the position of peaks. The centroid and cen-
ter of mass may be slightly better than the maximum position
algorithm. Even for highly blurred Kikuchi bands, the preci-
sion of correctly detected peaks is within 3 pixels in the 6
and p directions of the Hough space (3° angular mismatch
and 5 pixel shift). The same accuracy is found on noisy
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Figure 8. Accuracy of the peak positioning algorithms of EBSD-
Image in the (a) 6 and (b) p directions of the Hough space as a
function of the kernel size of the smoothing filter.

patterns. Consequently, the three algorithms are able to prop-
erly position the center of the Kikuchi bands.

Deformation

The profiles of the iron and copper control (undeformed)
samples show no apparent deformation. Figure 9 compares
the profile of the control and deformed copper samples.
The values are calculated from the quality metric based
on the Fourier transform. There are small variations in the
profile of the control sample, which could be related to
surface cleanliness and polishing relief. These effects com-
bined with the difficulty of properly identifying the edge of
the sample (after the nickel plated layer) may pose a chal-
lenge in the evaluation of smaller deformation depths. For
instance, it may not be possible to reliably determine the
deformation induced by finer grit paper or by diamond
polishing with this method of analysis.

Different deformation depths are obtained depending
on the quality metric used, even if we exclude the quality
metrics that did not evaluate deformation. Figure 10 shows
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Table 2. Evaluation of Quality Metrics Based on Their Ability to
Assess the Level of Deformation.

Pattern Hough Detected Peaks
Average Bad Bad Good
Standard Good Good Fair

deviation
Entropy Good Good N/A
Range Good Good Fair
Sum Bad Bad Good
Count N/A N/A Fair
Others Fourier transform — Band contrast
Signal-to-noise Band slope

Pattern quality
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Figure 9. Comparison between the deformation profile of the
control and deformed copper samples. The quality metric based
on the Fourier transform is shown.
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Figure 10. Deformation profiles obtained by five quality metrics
on (a) the copper and (b) iron samples. The circle markers indicate
the deformation depth.

Local difference

the deformation profiles obtained using the band slope,
Hough entropy, image quality, average local difference, and
pattern standard deviation quality metrics for the copper
(Fig. 10a) and iron (Fig. 10b) samples. The deformation
depth found ranges between 3 and 7 um for the copper
sample and between 4 and 6 um for the iron sample. The
variation in the deformation depth indicates that some
quality metrics may underestimate the deformation while
others may overestimate it. These measurements are compa-
rable with those obtained by Samuels (2003) on a 30% Zn
brass. By visual inspection of the sample after etching, he
measured a significant deformation depth of 7.5 wm, but he
also observed signs of the deformation up to 77 um below
the surface. Regions of small localized deformation may be
difficult to quantitatively assess using quality metrics due to
their dependence on crystallographic orientation and other
defects such as grain boundaries. Techniques based on local
misorientation (Brewer et al., 2009) and small variations in
the diffraction patterns (Wilkinson et al., 2005) would be
more suitable to locate small strain levels.

Evaluation of Quality Metrics

We shall define three categories of quality metrics based on
their ability to evaluate deformation. A good quality metric
must meet the following requirements for all iron and
copper samples: (1) a deformation profile showing mono-
tonic increase as a function of depth and (2) a relatively
similar deformation depth to other quality metrics for a
given sample. A fair quality metric would comply with some
of these requirements or only for some samples, whereas a
bad quality metric does not meet any requirements.

Table 2 summarizes the evaluation of the quality met-
rics. The comparison of mappings from quality metrics
calculated from the diffraction patterns or the Hough spaces
reveals some similarity between these two sources of infor-
mation. This can be explained by the fact that the intensities
in the Hough space are derived from those in the diffraction
pattern. On the other hand, the contrast in the Hough range
mapping is more enhanced than that of the pattern range
mapping due to the concentration of high intensities in the
Hough peaks. Our results for the average metric agree with



Wright and Nowell’s (2006) observations that this metric is
relatively unaffected by deformation. The same trend is
observed using the sum of intensities. The standard devia-
tion and range are able to measure the increase in contrast
as more intense Kikuchi bands emerge from deformed
patterns. Shannon’s entropy gives a good measure of the
deformation; however, further measurements are required
to fully understand how the estimation of the compressibil-
ity of an image and the level of deformation are related.

The quality metrics evaluated using the intensities of
detected peaks are inherently dependent on the number of
peaks detected. For this reason, the operations (average,
standard deviation, etc.) were performed on the three to
seven most intense peaks as well as on all detected peaks.
We found that the number of peaks used in the calculations
has little influence on the average but leads to a large
variation of the deformation depth for the standard devia-
tion and the range (50% difference). The sum is more
affected than the average but less than the standard devia-
tion and the range. This behavior could be explained by the
presence of false peaks in the deformed region that would
increase the variability in the intensity of the peaks. With
low intensity, these false peaks have a minor effect on the
average and the sum. The number of detected peaks is
successful in measuring the deformation depth on the iron
sample only. Of all the quality metrics tested, the latter
would be most affected by the presence of false peaks.
Nevertheless, it is difficult to explain the different behavior
between copper and iron samples. From the grain maps, the
copper samples have more recrystallized grains than the
iron ones near the deformed surface. The presence of these
grains may increase the average number of detected peaks
and disrupt the deformation profile.

Other good quality metrics are the band contrast (cal-
culated by HKL Channel 5), the band slope (calculated by
HKL Channel 5), and the one calculated from the Fourier
transform. The pattern quality (as in Oxford INCA) gives a
fair response to deformation because it could not correctly
evaluate the deformation depth for all samples: its values
were found to vary and decrease in the undeformed region.
The signal-to-noise ratio was not able to properly evaluate
the deformation: this quality metric was inversely propor-
tional to the deformation depth, having its maximum value
at the deformed surface.

The quality metrics based on the local difference within
the detected peaks were also able to detect the level of
deformation. It was found that the average, standard devia-
tion, and maximum of the local difference values give
similar deformation depths and distributions. The mini-
mum intensity difference does not seem to carry any defor-
mation information.

The set of simulated diffraction patterns used for the
benchmarking of algorithms can also help understand how
different quality metrics evaluate the level of deformation in
a sample. Instead of the number of detected peaks or the
accuracy, the quality metrics are calculated from diffraction
patterns at different levels of deterioration. As previously
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Figure 11. Variation of the quality metrics as a function of the
kernel size of the smoothing filter.

discussed, distortion in the lattice at the level of the inter-
action volume leads to blurring of the edges of the Kikuchi
bands. The smoothing filter was used to mimic this effect.
The measurements were normalized by the quality value of
the initial simulated pattern without any deterioration. Fig-
ure 11 illustrates the results for five quality metrics: three
identified as good evaluators of deformation (pattern en-
tropy, maximum local difference, and peaks average), one
which had a fair response (peaks standard deviation), and
one found to be insensitive to deformation (Hough aver-
age). The good quality metrics show a decrease in their
quality as the blurriness of the Kikuchi bands is increased.
The fact that the maximum local difference has a large
change in comparison with the pattern entropy and the
peaks’ average does not imply that the former is more
sensitive to deformation than the others. The curves show
the relative variation for each quality metric, not the abso-
lute change because the effective theoretical range of the
quality metrics is unknown. The peaks’ standard deviation
has a similar trend but a larger variability than the good
quality metrics, which could explain its fair response to
deformation. As expected, the Hough average is constant as
it is not affected by the sharpness of the diffraction patterns.
The influence of the orientation on the quality metrics is
evaluated by the error bars. The simulations suggest that the
pattern entropy is less influenced by orientation than the
maximum local difference and the peaks’ average. It is not
possible, however, to experimentally validate this observa-
tion with the samples used in this study.

CONCLUSION

EBSD-Image is an open source program for processing
Kikuchi patterns. It allows the user to add any type of
processing algorithm to analyze diffraction patterns ac-
quired during a mapping. In the current version, different
quality metrics can be computed. They are as valuable as
the different electron signals now found in modern SEMs,
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namely secondary (upper or lower detector) and backscatter
electrons detector (low and high angle) because they can
reveal different properties of the microstructure. Some are
implemented in commercial EBSD acquisition software, but
the implementation of new metrics within these software
packages is not possible, leaving users to design their own
system. EBSD-Image provides an alternative solution to this
problem. Its flexible analytical structure is designed to facil-
itate the implementation of recognized algorithms and the
development of new ones. Fourteen out of 24 quality met-
rics were found to properly evaluate the level of deforma-
tion inside copper and iron samples mechanically deformed
by a 220 grit SiC grinding paper. Benchmarking using
simulated diffraction patterns validated the algorithms used
in EBSD-Image, which were comparable to those in com-
mercial software. However, as an open research and devel-
opment platform, EBSD-Image offers the possibility to
develop better and more appropriate algorithms for the
EBSD community.
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